

# **TPC Timing Diagram**



## Timing Equations

- 1.  $y_{cathode} y_{anode} = v_{drift} (t_{top} + t_{stick}) = 74.8 \text{ cm}$
- 2.  $y_{tGG} y_{anode} = v_{drift} (t_{bottom} + t_{stick}) = v_{drift} (t_{GG}) + 1 \text{ cm}$
- 3.  $y_{\text{track}} y_{\text{anode}} = v_{\text{drift}} (t_{\text{track}} + t_{\text{stick}}) = \text{from DC matching}$



### Times we know to within 100 ns



- $t_{trig} = 200 \text{ ns}$
- $t_{\text{stick}} = t_{\text{trig}} + 350 \text{ ns} = 5.5 \text{ bkt}$
- $t_{GG} = t_{trig} + 500 \text{ ns} = 7 \text{ bkt}$
- $t_{phase} = 450 \text{ ns} (\sim t_{stick} t_{trig} \text{ with additional } 100 \text{ ns delay})$



#### Times we can measure





- $t_{top} = 142.6 \text{ bkt (units of } 100 \text{ ns)}$
- $t_{bottom} = 6.7 \text{ bkt}$
- $t_{track} = 12.7$  bkt below DC prediction



### Check the Math

## Timing Equations

1. 
$$y_{cathode} - y_{anode} = v_{drift} (t_{top} + t_{stick}) = 74.8 \text{ cm}$$

2. 
$$y_{tGG} - y_{anode} = v_{drift} (t_{bottom} + t_{stick}) = v_{drift} (t_{GG}) + 1 \text{ cm}$$

3. 
$$y_{\text{track}} - y_{\text{anode}} = v_{\text{drift}} (t_{\text{track}} + t_{\text{stick}}) = \text{from DC matching}$$

## • Divide by v<sub>drift</sub> and compare LHS and RHS bkt

- 1. 142.7 + 5.5 = 148.2 bkt
- $149.6 \text{ bkt} = 74.8 \text{ cm/v}_{\text{drift}}$
- 2. 6.7 + 5.5 = 12.2 bkt
- $9 \text{ bkt} = 7 \text{ bkt} + 1 \text{ cm/v}_{\text{drift}}$
- gating grid taking~300 ns longer to open?
- 3. Using  $t_{phase}$  instead of  $t_{stick}$  Jon finds tpc tracks low by 12.7 bkts. There is no room to add this much time to  $t_{stick}$ . We should remeasure all times to be sure, but most likely the TPC (& JGG) are not where the software is placing them.